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MISSION 
 
In nature, living organisms consist of a limited number of primary components and chemical 
bonds organized in complex systems capable to adapt to diversified environmental 
conditions. Materials are very rarely adaptable, and often require a large number of 
components to achieve high performances in specific functions. In this comparison between 
organisms and materials, the approach to their respective life-cycles are also largely different, 
the former renewing in a continuous interaction with the environment, the latter mainly 
preserving from alterations. 
 
Indeed, materials able to perform different functions and to respond to external inputs will 
become increasingly important. They will play a fundamental role in the additive production 
to the extent that these are designed and structured to perform specific operations and self-
adapt to varying external conditions, without any additional device. Materials able to perform 
as sensors and actuators, accordingly to external environmental conditions for fulfilling 
different requirements, are still a challenge. These intelligent materials should be flexible in 
any context and condition, and possibly consist of primitive units, containing the minimal and 
sufficient number of components to perform a basic function, whose combinations can 
respond to specific requests of multi-functionality and adaptability. 
 
The required approach is well-known in science, looking for a bridge between the observable 
macroscopic and the microscopic levels, towards a coherence between descriptions of reality 
and complexity. It is not simply a matter of promoting inter and cross-disciplinarity, but in 
understanding the relationships between fundamental scientific theories and contingent 
conditions or environments, which can play a role in the emergence of new features.  
 
 
MAIN CHALLENGES 
In march 2017, the CNR-S&T Foresight Group on Materials and scientists from different 
disciplines met to identify the main challenges in addressing the concept of “Stem Materials”. 
 
A new paradigm in the modeling of artifacts has already emerged with the digitization of 
manufacturing, now fueled by advances in additive manufacturing and material science [1].  

                                                        
* The adjective "stem", commonly attributed to cells, refers to the use of blocks of primitive 
and non-specialized materials which, even if not able to differentiate spontaneously in several 
other types, undergo a process of transformation aimed to make them capable to adapt to 
specific requirements.  
 



   
 
 
 
Several researchers have proposed theoretical foundations and practical implementations of 
some structures [2,3] that extend the representational capabilities of solid modeling: these 
challenges require the capabilities of modeling embedded nano and microstructures, internal 
geometry architectures, multi-scale behaviors, and composite multi-material objects. In this 
context, the functional specification of artifact’s behavior is the least understood: many 
abstractions of function and behavior have been proposed [4, 5, 6], but the formal semantics 
of such models remains unclear [1]. One of the main challenges to break this impasse is to 
venture beyond static structures into dynamic nanomaterials that organize and/or function 
out of the thermodynamic equilibrium. In particular, over the last two decades, the focus of 
materials chemistry and nanotechnology has been gradually shifting from the synthesis of 
individual nanomaterial to the synthesis/assembly of hybrid organic-inorganic 
heterostructure and  bio-inspired supramolecular aggregates, following three different 
thermodynamic approaches: “equilibrium”, “kinetically trapped” and “far-from-equilibrium” 
assemblies [7,8]. Heterointegration of materials with different characteristics, including  
different scales (atomic, nano, meso, macro), chemical character (organic/inorganic), 
dimensionalities (e.g. interfacing 0D, 1D, and 2D objects altogether), and geometry (e.g. 
topology), offers a number of still unexplored routes in this respect. For instance, the 
synthesis/assembly of larger nanostructures and materials has been successful in a variety of 
structures (molecule-like nanoclusters [9,10,11]  2D nanoparticle arrays [12,13,14] and 3D 
crystals [15,16] DNA origami [17,18] mesoporous materials [19,20,21]). Although these 
materials are being used to address important challenges in different applications (catalysis 
[22], energy conversion [23,24,25], information storage and processing [26], sensing 
[27,28,29], diagnostics [30,31,32] and therapeutics [33]), a radical progress seems not to be 
introduced [8].  
 
Materials scientists have explored geneticists’ lessons to identify a ‘materials genome’ that 
encodes the properties of various compounds in the same way that biological information is 
encoded in DNA base pairs and the way they are arranged in space. In 2003, it was first 
showed [34] how a database of quantum-mechanics calculations could help to predict the 
most likely crystal structure of a metal alloy — a key step for anyone in the business of 
inventing new materials. The design of machine-learning algorithms capable to extract 
patterns from a library of compounds has provided unprecedented results [35], but even in 
the case of functional materials, current computer codes work well only for a limited number 
of cases [36]. 
 
Life-like properties of materials, such as multi-functionality, adaptability, re-configurability, 
taxis [37], internal feedback, or self-replication [38,39] have been definitely proposed to 
reside outside of thermodynamic equilibrium [40,41,42,43,44,45] and the main challenge is to 
understand if such “intelligent” materials may provide a range of functions that are not 
obtained in static, equilibrium materials (e.g., reconfigurable, adaptable, and self-repairing), 
thereby enabling the emergence of entirely new applications [46]. 
Understanding how living systems build and operate their nanoscale machinery (molecular 
recognition, maintenance of non-equilibrium conditions, feedback loop, reaction-diffusion 
processes, compartmentalization and communication), is foreseen for a successive integration 
towards functional systems/materials [47]. 
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Chemical synthetic biology (CSB), as the artificial design and engineering of new “quasi-
biological” materials, , is providing unprecedented outcomes. CSB uses and assembles 
biological parts, synthetic or not, to create new structures, allowing understanding the roots 
of biological function and organization [48].  Recently, advances in technologies and reduced 
costs are enabling a more systematic characterization of natural or artificial products, 
shedding lights on the potential number of undiscovered structures. This increased capacity 
suggests that one of the most substantial issues to be investigated is not the discovery of new 
products but rather the design and the construction of pathways that lead to the desired 
production [49]. Recent work to build large libraries of genes and regulatory parts have 
increased the control of gene expression by many orders of magnitude [50,51]. In this context, 
CRISPR interference has already gained traction in industry, agriculture and medicine as a 
powerful tool [52,53]. Nevertheless, these results are designed by trial and error, rather than 
being based on a fundamental understanding of how to build a functioning organism [54].  
 
The identification and design of “primitive units”, where minimal and sufficient components 
are contained to perform a basic function, seems far to come: the concept of a “minimal but 
complex cell” has been already developed and a “systemic approach” to the whole complex 
system is required [55,56]. 
This challenge is addressing the relationships between the components inside the cell and 
those with the contingent conditions of the external environment. A better understanding of 
genetic changes enabling living organisms to respond to stress and the definition of the 
underlying mechanisms of plant adaptation to “unprecedented” environments (such as 
spaceflight) is already under investigation [57]. Having in mind that most of systems found in 
nature are not in thermodynamic equilibrium, continuously and discontinuously subject to 
flux of matter and energy to and from other systems and to chemical reactions, understanding 
non-equilibrium states is indisputably one of the issues to be addressed [58,59,33].   
 
The issue of non-equilibrium is indirectly linked to an aspect which is asking the material 
science and biology communities to tackle the challenge of “stem materials”: sustainability. If  
sustainability has been traditionally embedded in the challenge of securing critical raw 
materials, in living organisms it can be associated to the aspects of homeostasis [60]. In this 
regard, despite performance is usually opposed to multi-functionality and adaptability, the 
capability to recycle and convert the environmental resources to address specific needs has to 
be considered a sort of fil-rouge when designing the next generation of materials.  
 
We would like to thank the participants to the scoping workshop held in Rome on 23-24 
March 2017 for their contribution in the elaboration of this document: Tommaso Calarco, 
Andrea Camposeo, Michele Laus, Pier Luigi Luisi, Liberato Manna, Nicola Marzari, Alessandro 
Molle, Francesco Stellacci and Angelo Vulpiani. 

 



   
 

 
We are facing unprecedented impacts from simulations and processing in material sciences as 
well as from chemical synthetic biology, where their common approach is by trials or 
mimicking nature.  
 
The way forward “Stem Materials”, in terms of multi-functionality and adaptability, requires 
addressing different aspects (see figure 1) which are independently advancing. In this 
scenario, it is well known that the context fixes the relevant level of description of a reality 
[61]: fundamental laws do not describe true facts whereas phenomenological laws refer to 
empirical reality.  
 
The main dilemma is in identifying paths and action towards a general and breakthrough 
framework for primitive units as a sort of ribosome of Materials and their combinations. 
 

 
 

 
 
Figure 1: a brief sketch of the aspects identified as those to be addressed for tackling the 
challenge of stem materials. In blue, those which at the moment seem to be closer to biology, 
in red those which are mainly framed in physics, material and computing sciences, and in 
green the aspect of sustainability which addresses both homeostasis and critical raw 
materials . 
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